

11/10/11

Technical Report for

K.P. Kauffmann Company, Inc.

Wattenberg Tank

Accutest Job Number: D28954

Sampling Date: 10/27/11

Apex Consulting Services PO Box 369 Louisville, CO 80027-0369 mhattel@msn.com; sglass@kpk.com

ATTN: Mike Hattel

Total number of pages in report: 26

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Brad Madadian

Laboratory Director

Client Service contact: Shea Greiner 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW) UT (NELAP CO00049)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

3
4
6
7
8
9
10
12
13
21
22
23
24
25
26

2

ω

4

C)

Sample Summary

K.P. Kauffmann Company, Inc.

Job No:

D28954

Wattenberg Tank

Sample Number	Collected Date Time	e By	Received	Matri Code		Client Sample ID
D28954-1	10/27/11 15:3	80 MH	10/27/11	AQ	Water	TANK-1
D28954-1F	10/27/11 15:3	80 MH	10/27/11	AQ	Water Filtered	TANK-1

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: K.P. Kauffmann Company, Inc.

Job No

D28954

Site:

Wattenberg Tank

Report Dat

11/10/2011 2:16:58 PM

On 10/27/2011, I sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 1.5 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D28954 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010B

Matrix AQ

Batch ID: MP6139

- All samples were digested and analyzed within the recommended method holding time.
- Sample(s) D28977-3FMS, D28977-3FMSD were used as the QC samples for the metals analysis.
- MP6139-MB1 for Sodium: All sample results >10x method blank concentration.

Wet Chemistry By Method ASTM D287

Matrix ALL

Batch ID: GN12447

The data for ASTM D287 meets quality control requirements.

Wet Chemistry By Method EPA 1664A

Matrix AQ

Batch ID: GP5872

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 300/SW846 9056

Matrix AQ

Batch ID: GP5807

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D28977-3MS, D28977-3MSD were used as the QC samples for the Chloride, Nitrogen, Nitrate, Nitrogen, Nitrite, Sulfate analysis.
- D28954-1 for Nitrogen, Nitrite: Elevated detection limit due to matrix interference.
- D28954-1 for Nitrogen, Nitrate: Elevated detection limit due to matrix interference.

Wet Chemistry By Method SM20 2540C

Matrix AQ

Batch ID: GN12272

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D28873-1DUP were used as the QC samples for the Solids, Total Dissolved analysis.

Wet Chemistry By Method SM20 5310B

Matrix AQ

GP5834 Batch ID:

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D28899-8DUP, D28899-8MS, D28899-8MSD were used as the QC samples for the Total Organic Carbon analysis.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Sample Results	and one of h
Report of Analysis	

Report of Analysis

Page 1 of 1

Client Sample ID: TANK-1 Lab Sample ID: D28954-1 Matrix: AQ - Water

Date Sampled: 10/27/11 **Date Received:** 10/27/11 **Percent Solids:** n/a

Project:

Wattenberg Tank

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chloride	11600	250	mg/1	500	10/28/11 13:11	JML	EPA 300/SW846 9056
HEM Oil and Grease	31.5	5.1	mg/l	1	11/08/11	SWT	EPA 1664A
Nitrogen, Nitrate a	< 1.1	1.1	mg/l	25	10/28/11 11:06	JML	EPA 300/SW846 9056
Nitrogen, Nitrite ^a	< 31	31	mg/l	500	10/28/11 13:11	JML	EPA 300/SW846 9056
Solids, Total Dissolved	18800	10	mg/l	1	11/01/11	JK	SM20 2540C
Specific Gravity by Hydrome	te 1.0129			1	11/10/11	CJ	ASTM D287
Sulfate	63.8	13	mg/l	25	10/28/11 11:06	JML	EPA 300/SW846 9056
Total Organic Carbon	703	100	mg/l	100	11/02/11 15:42	GH	SM20 5310B
рН	7.11		su	1	10/28/11 10:40	JK	SM20 4500H

(a) Elevated detection limit due to matrix interference.

Page 1 of 1

Client Sample ID: TANK-1 Lab Sample ID: D28954-1F

Matrix: AQ - Water Filtered

Date Sampled: 10/27/11 **Date Received:** 10/27/11

Percent Solids: n/a

Project:

Wattenberg Tank

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	259000	20000	ug/l	5	10/31/11	11/01/11 лв	SW846 6010B ¹	SW846 3010A ²
Magnesium	45100	10000	ug/l	5	10/31/11	11/01/11 лв	SW846 6010B ¹	SW846 3010A ²
Potassium	144000	50000	ug/l	5	10/31/11	11/01/11 јв	SW846 6010B ¹	SW846 3010A ²
Sodium	8170000	20000	ug/l	5	10/31/11	11/01/11 лв	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA1936

(2) Prep QC Batch: MP6139

CHAIN OF CUSTODY

4444	ACCUTES	27					4036 Y	oungi	field t	St., 1	Wheat	Ridg	ge, CO	8003	33	Tracking I	200				Bottle (Order Co	ntral#		
~	Laborator	-							,					ļ	Accute	at Quote#					Accute	st Job#		7 60 6) h . l
	Laborator	165																	LOUIS PRODU	100.00		- 	<u>v</u> .	20-	754
20 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Client / Reporting Information			M Nac 2	Proj	ect info	rmation	1		1111	25.000	10.7	1770.6		i dene			-	Tonata de	Requ	ested A	nalvsi	9		Matrix Codes
Company N	ame			Project N			ENBE	_	TAN	lle.	12 (01)		, i. mone	-	HOCK, MAN	-	i store des			1.000	1	1	Ĭ		DW- Drinking Water
	K.P. Kauffman Company, Inc.				ame.	WANT	CNDE	KG	IAF	NI.]								1	GW- Ground Water
Address 1675 E	Broadway, Suite 2800			Street																					WW- Water SW- Surface Water
City	State	-	ZIp	City					State	9				\neg				-							SC- Soil
Denve	r CO	80202-46	328	Fort Lu	upton					co				- [NITRITE)E)		Į≨							SL-Sludge Ol-Oil
roject Con	Sherry Glass	sglass@	kpk.com	Project #											1664	1 2 1		CATIONS (Ca, K, Mg, NA)	≩						LIQ-Other Liquid
hone#	303-825-4822			Fex#							GREASE	(NITRATE		, ać	GRAVITY						AIR- Air				
iamplers's	Name MICHAEL HATTEL (303	3-665-1400)		Client Pu	rchase Order	#							75	591	Ä			0)	9						
Accutest		SUMMA#	,	Collecti	ion			lNu	mber	of	rese	rved	Bottle			N A	- 74	Š	英			ŀ			SOL-Other Solid WP-Wipe
Sample #	Field ID / Point of Collection	MEOH Vial #	Date	Time	Sampled by	Matrix	# of bottles				128.04 1	W.	MEOH	ENCORE	OIL &	ANIONS (N SULFATE,	표	CAT	SPECIFIC	£ P	ည				LAB USE ONLY
	TANK - I		10/27/11	150	МДН	LIQ	7	х	П	П	x	Т			X.	х	х	х	х	х	х				01
			117					İ			1	╅	\top	\dashv					-						4
		-						+		\dashv	+	+	+	-											1 (01)
								L	Н	_	+	4	11	_		\sqcup									
			_																						
											Ţ			T										Т	
				-						7	+	╈	1												1
								Н	1	+	+	+-	+	\dashv		-				_					
								Ш	Н	4	4	1	1	_											
										П	Т	T	П	П											
										-+	7	+		+								\dashv			
	Turnaround Time (Business days)	4 100	a ran		3.86156.9	Data De	Irverable	loforr	nation	-		driet	L LUCKET			100 1007				C	mmente	/ Rams	rke	10000	
x	Std. 10 Business Days	Approved By	/ Date:	- United		ercial "A				L CL	P	13/11/11		Str. di	account of	260000000	1014.616	STREET, ST.			DITE OF THE	7 (10)110	ii No	Ç-,	State of the Berlin and Commission of the
				- 3	Comm	ercial "B	,	\equiv	NYA	SP C	atego	ry A													
					NJ Rec	duced			NYA	SP C	atego	ry B													
					NJ Ful					e Fo	rms														
					x Hard C	ору		X	PDF							205				11-46					
																PDF C	opy a	so to	Mike	Hatt	el wit	h APE	:X at	mhatte	l@msn.com
Emerg	ency T/A data available VIA La	blink					. 10-10									PDF c	a yac	so to	She	rry Gl	ass w	ith Ki	PK at	SGlass	s@kpk.com
Relingulah	Sample Co	ustody must be	documente	d below	each time as	amples	change	poss	e55	on, i	ncluc	ling c	courier	delly	very.							Mari II.		N. E.	Calabaran physician Sect 2, 15
	mon		1./.		Received By:				27/	'/	telinqu	ished	ву:				ate Time	:			Received	ı By:			
Relifiquish	ed By:	-4	0427///	1753	Received By:	ob Pe	34-4-1	- 1	75	<u>S</u>	elingu	ished :	Ву:				ata Time				2 Received	By:			

HD

D28954: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

ate / Time Received: 10/27/2	2011 5:55:00 PM No. Co	olers:	1 Client Service Action	Required at Login: No
oject: WATTENBERG TANK			Airbill #'s: HD	- 10 <u>-</u>
1. Custody Seals Present: 2. Custody Seals Intact: 2. Custody Seals Intact: 2. Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 2. Cooler: 2. Trip Blank Jisted on COC: 2. Cooler: 2. Trip Blank Jisted on COC: 2. Cooler: 2. Co	3. COC Present: 4. Smpl Dates/Time OK Y or N Infared gun Ice (bag) Y or N N/A	Y or N ☑ □ ☑	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests	Y or N O O Y or N Intact Y or N NVA
Samples preserved properly: VOCs headspace free:			2. Bottles received for unspecified tests 3. Sufficient volume rec'd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	
Comments				
Accutest Laboratories V:(303) 425-6021			ngfield Street) 425-6854	Wheat Ridge, CO www/accutest.com

D28954: Chain of Custody

Page 2 of 2

Metals	s Analysis	
QC Da	ta Summaries	

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- · Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D28954 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS

Methods: SW846 6010B Units: ug/l

Prep Date:

10/31/11

Metal	RL	IDL	MDL	MB raw	final
Aluminum	100	5.9	5.9		GRANG TO THE STATE OF THE STATE
Antimony	30	3.1	3.1		
Arsenic	25	5.9	5.9		
Barium	10	1.1	1.1		
Beryllium	10	. 44	.5		
Boron	50	4.8	4.8		
Cadmium	10	.27	.27		
Calcium	400	9.6	15	18.9	<400
Chromium	10	.18	.79		
Cobalt	5.0	.35	.35		
Copper	10	.85	2.8		
Iron	70	3.4	13		
Lead	50	1.6	2.1		
Lithium	2.0	.28	1.2		
Magnesium	200	5.8	10	5.2	<200
Manganese	5.0	.053	.31		
Molybdenum	10	.45	.87		
Nickel	30	.43	1		
Phosphorus	100	11	20		
Potassium	1000	55	55	111	<1000
Selenium	50	3.8	3.8		
Silicon	50	3.8	3.8		
Silver	30	.18	.31		
Sodium	400	110	110	218	* (a)
Strontium	5.0		.25		
Thallium	10	2.9	2.9		
Tin	50	5.5	9.9		
Titanium	10	.11	.31		
Uranium	50	1.5	3.5		
Vanadium	10	.16	.22		
Zinc	30	.28	1.8		

Associated samples MP6139: D28954-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested (a) All sample results $>10\,\mathrm{x}$ method blank concentration.

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B

Units: ug/l

Prep Date:

10/31/11

Metal	D28977- Origina		Spikelo MPICPAI	t L % Rec	QC Limits	
Aluminum						
Antimony						
Arsenic	anr					
Barium	anr					
Beryllium						
Boron	anr					
Cadmium	anr					
Calcium	72000	91600	25000	110.0	75-125	
Chromium	anr					
Cobalt						
Copper	anr					
Iron	anr					
Lead	anr					
Lithium						
Magnesium	34200	55300	25000	103.6	75-125	
Manganese	anr					
Molybdenum						
Nickel						
Phosphorus						
Potassium	0.00	27400	25000	107.3	75–125	
Selenium	anr					
Silicon						
Silver						
Sodium	64500	81600	25000	106.0	75–125	
Strontium						
Fhallium						
Гin						
Fitanium						
Jranium						
Vanadium						
Zinc						

Associated samples MP6139: D28954-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $% \left\{ 1,2,\ldots ,2,3,\ldots \right\} =0$

Login Number: D28954 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

10/31/11

Metal	D28977- Origina		Spikelo MPICPAL		MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	anr					
Barium	anr					
Beryllium						
Boron	anr					
Cadmium	anr					
Calcium	72000	90900	25000	107.2	0.8	20
Chromium	anr					
Cobalt						
Copper	anr					
Iron	anr					
Lead	anr					
Lithium						
Magnesium	34200	55100	25000	102.8	0.4	20
Manganese	anr					
Molybdenum						
Nickel						
Phosphorus						
Potassium	0.00	27300	25000	106.9	0.4	20
Selenium	anr					
Silicon						
Silver						
Sodium	64500	80400	25000	101.2	1.5	20
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc						
Associated sa	mples MP6	5139: D289	954-1F			

Login Number: D28954 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

10/31/11

Metal	BSP Result	Spikelo MPICPAL	L % Rec	QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Boron	anr			
Cadmium	anr			
Calcium	27300	25000	109.2	80-120
Chromium	anr			
Cobalt				
Copper	anr			
Iron	anr			
Lead	anr			
Lithium				
Magnesium	26200	25000	104.8	80-120
Manganese	anr	•		
Molybdenum				
Nickel				
Phosphorus				
Potassium	26500	25000	106.0	80-120
Selenium	anr			
Silicon				
Silver				
Sodium	26300	25000	105.2	80-120
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				
Associated s	amples MP6	5139: D289	954-1F	

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6139 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

Cichelai Chemisu	eral Chemistry
------------------	----------------

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- · Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D28954 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

			MB		Spike	BSP	BSP	QC
Analyte	Batch ID	RL	Result	Units	Amount	Result	%Recov	Limits
Bromide	GP5807/GN12243	0.20	0.0	mg/l	20	19.9	99.5	90-110%
Chloride	GP5807/GN12243	0.50	0.22	mg/l	20	19.5	97.5	90-110%
HEM Oil and Grease	GP5872/GN12360	5.0	0.0	mg/l	40	33.6	84.0	78-114%
Nitrogen, Nitrate	GP5807/GN12243	0.045	0.0	mg/l	4.52	4.39	97.2	90-110%
Nitrogen, Nitrite	GP5807/GN12243	0.061	0.0	mg/l	6.09	6.08	99.8	90-110%
Solids, Total Dissolved	GN12272	10	0.0	mg/l	400	394	98.5	90-110%
Sulfate	GP5807/GN12243	0.50	0.0	mg/l	30	28.9	96.3	90-110%
Total Organic Carbon	GP5834/GN12322	1.0	0.0	mg/l	7.2	7.24	100.6	90-110%
Hq	GN12230			su	8.00	7.96	99.5	99.3-10

Associated Samples:
Batch GN12230: D28954-1
Batch GN12272: D28954-1
Batch GP5807: D28954-1
Batch GP5834: D28954-1
Batch GP5872: D28954-1
(*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
HEM Oil and Grease	GP5872/GN12360	mg/l	40	35.5	5.5	20%	

Associated Samples: Batch GP5872: D28954-1 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D28954 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Solids, Total Dissolved	GN12272	D28873-1	mg/1	756	756	0.0	0-25%
Total Organic Carbon	GP5834/GN12322	D28899-8	mg/1	3.1	2.9		0-20%

Associated Samples: Batch GN12272: D28954-1 Batch GP5834: D28954-1 (*) Outside of QC limits

D28954

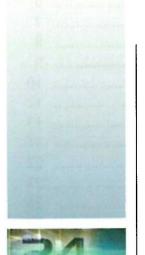
MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Bromide	GP5807/GN12243	D28977-3	mg/l	0.0	12.5	12.4	99.2	80-1209
Chloride	GP5807/GN12243	D28977-3	mq/1	8.2	50	58.3	100.2	80-1209
Nitrogen, Nitrate	GP5807/GN12243	D28977-3	mq/1	1.5	2.83	4.3	99.1	80-1209
Nitrogen, Nitrite	GP5807/GN12243	D28977-3	mg/l	0.0	1.52	1.5	98.5	80-1209
Sulfate	GP5807/GN12243	D28977-3	mq/l	115	50	169	108.0	80-1209
Total Organic Carbon	GP5834/GN12322	D28899-8	mg/l	3.1	10	13.4	103.0	80-1209

Associated Samples:
Batch GP5807: D28954-1
Batch GP5834: D28954-1
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

Login Number: D28954
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank


Analyte	Batch ID	QC Sample Units		Original Result	Spike Amount	MSD Result	RPD	QC Limit
Bromide	GP5807/GN12243	D28977-3	mg/l	0.0	12.5	12.5	0.8	20%
Chloride	GP5807/GN12243	D28977-3	mg/l	8.2	50	58.1	0.3	20%
Nitrogen, Nitrate	GP5807/GN12243	D28977-3	mg/l	1.5	2.83	4.3	0.0	20%
Nitrogen, Nitrite	GP5807/GN12243	D28977-3	mg/l	0.0	1.52	1.5	0.0	20%
Sulfate	GP5807/GN12243	D28977-3	mg/l	115	50	168	0.6	20%
Total Organic Carbon	GP5834/GN12322	D28899-8	mg/l	3.1	10	13.4	0.0	20%

Associated Samples: Batch GP5807: D28954-1 Batch GP5834: D28954-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

12/06/11

Technical Report for

K.P. Kauffmann Company, Inc.

Wattenberg Tank

PO# 7591

Accutest Job Number: D29699

Sampling Date: 11/22/11

Apex Consulting Services PO Box 369 Louisville, CO 80027-0369 mhattel@msn.com; kgilbert@kpk.com

ATTN: Mike Hattel

Total number of pages in report: 26

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Brad Madadian Laboratory Director

Client Service contact: Shea Greiner 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW) UT (NELAP CO00049)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Sample Results	
3.1: D29699-1: TANK-1	
3.2: D29699-1F: TANK-1	8
Section 4: Misc. Forms	9
4.1: Chain of Custody	10
Section 5: Metals Analysis - QC Data Summaries	12
5.1: Prep QC MP6352: Ca,Mg,K,Na	
Section 6: General Chemistry - QC Data Summaries	
6.1: Method Blank and Spike Results Summary	
6.2: Blank Spike Duplicate Results Summary	
6.3: Duplicate Results Summary	
6.4: Matrix Spike Results Summary	
6.5: Matrix Spike Duplicate Results Summary	

Sample Summary

K.P. Kauffmann Company, Inc.

Job No:

D29699

Wattenberg Tank Project No: PO# 7591

Sample Number	Collected Date	Time By		Matrix Code Type	Client Sample ID
D29699-1	11/22/11	12:00 MH	11/22/11	AQ Water	TANK-1
D29699-1F	11/22/11	12:00 MH	11/22/11	AQ Water Filtered	TANK-1

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: K.P. Kauffmann Company, Inc. Job No D29699

Site: Wattenberg Tank Report Dat 12/6/2011 12:50:00 PM

On 11/22/2011, 1 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 2.1 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D29699 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010B

Matrix AQ Batch ID: MP6352

- All samples were digested and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- * Sample(s) D29739-1MS, D29739-1MSD were used as the QC samples for the metals analysis.

Wet Chemistry By Method ASTM D287

Matrix ALL Batch ID: GN12751

* The data for ASTM D287 meets quality control requirements.

Wet Chemistry By Method EPA 1664A

Matrix AQ Batch ID: GP6040

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 300/SW846 9056

Matrix AQ Batch ID: GP6005

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D29711-1MS, D29711-1MSD were used as the QC samples for the anions analysis.
- D29699-1 for Nitrogen, Nitrite: Elevated detection limit due to matrix interference.
- D29699-1 for Nitrogen, Nitrate: Elevated detection limit due to matrix interference.

Wet Chemistry By Method SM20 2540C

Matrix AQ Batch ID: GN12659

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D29674-1DUP were used as the QC samples for the Solids, Total Dissolved analysis.

2

Wet Chemistry By Method SM20 5310B

Matrix AQ

Batch ID: GP6057

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D29825-3DUP, D29826-2MS, D29826-2MSD were used as the QC samples for the Total Organic Carbon analysis.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Sample Results	adler-lat	r hale	
Report of Analysis			

Report of Analysis

Page 1 of 1

Client Sample ID: TANK-1 Lab Sample ID: Matrix:

D29699-1 AQ - Water **Date Sampled:** 11/22/11 Date Received: 11/22/11

Percent Solids: n/a

Project:

Wattenberg Tank

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chloride	11700	250	mg/l	500	11/23/11 12:34	JML	EPA 300/SW846 9056
HEM Oil and Grease	15.7	5.3	mg/l	1.05820	112/02/11	SWT	EPA 1664A
Nitrogen, Nitrate ^a	< 1.1	1.1	mg/l	25	11/23/11 10:28	JML	EPA 300/SW846 9056
Nitrogen, Nitrite ^a	< 31	31	mg/l	500	11/23/11 12:34	JML	EPA 300/SW846 9056
Solids, Total Dissolved	20200	10	mg/l	1	11/28/11	JK	SM20 2540C
Specific Gravity by Hydrome	te 1.0151			1	12/02/11	CJ	ASTM D287
Sulfate	26.0	13	mg/l	25	11/23/11 10:28	JML	EPA 300/SW846 9056
Total Organic Carbon	436	25	mg/l	25	12/05/11 12:16	JML	SM20 5310B
рН	7.23		su	1	11/22/11 15:30	JК	SM20 4500H

(a) Elevated detection limit due to matrix interference.

Client Sample ID: TANK-1 Lab Sample ID: D29699-1

D29699-1F AQ - Water Filtered **Date Sampled:** 11/22/11 **Date Received:** 11/22/11

Percent Solids: n/a

Matrix:
Project:

Wattenberg Tank

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	248000	20000	ug/l	50	11/28/11	11/30/11 јв	SW846 6010B ¹	SW846 3010A ²
Magnesium	37500	10000	ug/l	50	11/28/11		SW846 6010B ¹	SW846 3010A ²
Potassium	201000	50000	ug/l	50	11/28/11		SW846 6010B ¹	SW846 3010A ²
Sodium	8230000	20000	ug/l	50	11/28/11		SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA2011

(2) Prep QC Batch: MP6352

3 6 1	_
Misc.	Forms
IVIISU.	1 011113

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

CH	INT	OF	CUSTOD	V
	XIIX	UP	COSTOL	ľ

ACCUTE	ST		4036 Youngfield St., Wheat Ridge, CO 806 303-425-6021 FAX: 303-425-6854											EX Trackin) #		-	,	Bottle Order Control #					
Laborato												Accı	Accutest Quote #						Accutest Job # 1029699					
Client / Reporting Information	content of a	Parker designed	ontalkinik (di	Proj	ect Info	rmation		File Sala	o'r Lie	1	1. 2.	a dross	10 officia	448. 757. 4	de eday	with the state of	17,49	Requ	ested /	Analysis	a []	egintalisessesses Kajor	Matrix Codes	
Company Name	17.45		Project N	lame:	WATT	TENBE	RG	TAN	ıĸ														DW- Drinking Water	
K.P. Kauffman Company, Inc			Street									<u>-</u>	-		1				1	1		+	GW- Ground Water WW- Water	
1675 Broadway, Suite 2800			Sugar											1	i								SW- Surface Water	
City State	•	ZIp	City					State	-				\dashv	E		-		1					SO- Soil	
Denver CO	80202-46	328	Fort L	upton				(co					ء ≝ا	-	1 ₹]				SL-Sludge Ol-Oil	
Project Contact: KENT GTGGGT	sqlass@	kpk.com	Project #										1664	1 Z S		Mg, NA)	≥		1		İ		0.0	
Phone #	igilberte k	pk.com	Fex#						-				1	F		모	GRAVITY						LIQ-Other Liquid	
303-825-4822													ASE	E		g,	13					1	AJR- AJr	
Samplers's Name MICHAEL HATTEL (3	03-665-1400)		Client Purchase Order # 7591								91 GRFAS	S 1		5	ပ္		1				SOL-Other Solid			
Accutest	SUMMA #		Collect	ion		T -	Nu	nber	of pr	eser	ved E	ottles	_ S	NS E		§	능		l				WP-Wipe	
Sample # Field ID / Point of Collection	MEOH Vial	Date	Time	Sampled by	Matrix	# of bottles	호	HON	SONH SONH	5 5	NaHSOA	MECH	ENCORE		표	CATIONS (Ca, K,	SPECIFIC	SQ1	ဥ				LAB USE ONLY	
TANK - I		Ulzlu	1200	мон	LIQ	7.	x)	(. х	x	х	х	X	х	х				01	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1						T														(80) W	
			-			 		H	\dashv	+	+-	\dashv	_	_		+			_		-		1	
					<u> </u>	ļ		-	-	+	+		-		 	-				 			***	
			ļ	ļ				Ц	_	\perp	_	Щ			ļ	_			ļ					
E 191												l i								il				
					17					-														
			1		-	-		\vdash	+	+	\vdash	-+			 	-	\vdash		 	\vdash				
			-				-	-	-	+-	-	+	+		 	-			 			+		
							L	\perp	_	4					<u> </u>	.				\sqcup		_		
																						1	U.S.	
			1.				Г		Т					-									*	
Turnaround Time (Business days)	3850,480	594	anec a		Data De	liverable	Infon	nation	(9)	Jang	it h	2	SCHOOL	1000	152.85	64.63		C	omment	s / Rema	irks	Juli-le	forpiday jarget sir i izati	
X Std. 10 Business Days	Approved By	:/ Date:		Comm	nercial "/	4"		FUL	L CLP															
	-				nercial "E	3"			SP Ca	_	•													
-			-	NJ FU	duced		누		SP Ca e Forn	_	ув													
			•	X Hard C			×			113														
														PDF	сору	also to	Mik	e Hat	tel wit	th APE	X at n	nhattel	@msn.com	
															*****	,	Ke	140	ilber	7	K	91150	HEKPK, com	
Emergency T/A data available VIA L		- d	ad bala						1:	alus fi			at a llaws -	PDF	соруа	ilso to	She	ry-0	loos v	vith KI	PK at 8	Glass	@kpk.eem	
Relinquished by Sampler:	Custody must be	Date Time:	ea below	Received By	amples	cnange	pos	80581	on, in	lingula	ing Co	y: y:	Deliver	/	Date Tir	10:		-	Aeceive	d By:	Alteria (Libraria	(it-,681 - set **	MERCAL COLUMN STATE OF THE STAT	
1 Monthlet		11/2/11	1315	1 1	NL			-	2										2					
Relinquished by:		Date Time:	· ·	Received By					Re	lingui	shed B	y:			Date Tin	10:			Receive	d By:				
3				3					4										4		- A. I.	·	- Y	
Relinquished by:		Date Time:		Received By					Cu	stody	Seal #			Preserv	ed where	applicat	le				On Ice	Cool	r Temp.	

D29699: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: D2969	Clie	nt: K.P. KAUF	FMAN COMPAN	IY INC.	Immediate Client Service	es Action Required:	No		
Date / Time Received: 11/22/	2011 1:	15:00 PM	No. Co	olers:	1	Client Service Action	tion Required at Login:		
Project: WATTENBERG TANK				Airbill #	Airbill #'s: HD				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact:			C Present: Dates/Time OK	Y or N ☑ □ ☑ □	Sample label Container lab	ity - Documentation s present on bottles: eling complete:	<u>Y or N</u> ✓ □ ✓ □		
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media:		N □ ed gun (bag)			Sample Integ	ainer label / COC agree: rity - Condition d within HT: s accounted for:	✓ □ Y or N ✓ □ ✓ □		
Quality Control Preservation	Υ_	or N	N/A		3. Condition of	sample:	Intact		
 Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: VOCs headspace free: 			V		Analysis req Bottles recei Sufficient vo	rity - Instructions uested is clear: ived for unspecified tests dume rec'd for analysis: g instructions clear: ructions clear:	Y or N	N/A	
Comments									
Accutest Laboratories V:(303) 425-6021					ungfield Street 3) 425-6854		Wheat Ridge, CO www/accutest.com		

D29699: Chain of Custody

Page 2 of 2

1		1 .
Metal	CAT	nalysis
IVICIAI	0 1 11	101 4 212

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

11/28/11

Prep Date:					11/20/11	
Metal	RL	IDL	MDL	MB raw	final	
Aluminum	100	5.9	5.9	-		
Antimony	30	3.1	3.1			
Arsenic	25	5.9	5.9			
Barium	10	1.1	1.1			
Beryllium	10	. 44	.5			
Boron	50	4.8	4.8			
Cadmium	10	.27	.27			
Calcium	400	9.6	15	11.3	<400	
Chromium	10	.18	.79			
Cobalt	5.0	.35	.35			
Copper	10	.85	2.8			
Iron	70	3.4	13			
Lead	50	1.6	2.1			
Lithium	2.0	.28	1.2			
Magnesium	200	5.8	10	3.3	<200	
Manganese	5.0	.053	.31			
Molybdenum	10	.45	.87			
Nickel	30	.43	1			
Phosphorus	100	11	20			
Potassium	1000	55	55	-28	<1000	
Selenium	50	3.8	3.8			
Silicon	50	3.8	3.8			
Silver	30	.18	.31			
Sodium	400	110	110	13.0	<400	
Strontium	5.0		.25			
Thallium	10	2.9	2.9			
Tin	50	5.5	9.9			
Titanium	10	.11	.31			
Uranium	50	1.5	3.5			
Vanadium	10	.16	.22			
Zinc	30	.28	1.8			

Associated samples MP6352: D29699-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D29699
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS

Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/1

Prep Date:

11/28/11

Metal	D29739-1 Original		Spikelot MPICPALL		QC Limits
Aluminum					
Antimony					
Arsenic	anr				
Barium	anr				
Beryllium					
Boron					
Cadmium	anr				
Calcium	113000	138000	25000	100.0	75-125
Chromium	anr				
Cobalt					
Copper					
Iron	anr				
Lead	anr				
Lithium					
Magnesium	49600	73900	25000	97.2	75–125
Manganese	anr				
Molybdenum					
Nickel					
Phosphorus					
Potassium	3080	29400	25000	105.3	75-125
Selenium	anr				
Silicon					
Silver	anr				
Sodium	435000	455000	25000	80.0	75–125
Strontium					
Thallium					
Tin					
Titanium					
Uranium					
Vanadium					
Zinc					
Associated sa	amples MP6	352: D296	99-1F		

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

Login Number: D29699
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $\,$

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

11/28/11

Metal	D29739-1 Original		Spikelo MPICPAL		MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	anr					
Barium	anr					
Beryllium						
Boron						
Cadmium	anr					
Calcium	113000	140000	25000	108.0	1.4	20
Chromium	anr					
Cobalt						
Copper						
Iron	anr					
Lead	anr					
Lithium						
Magnesium	49600	74500	25000	99.6	0.8	20
Manganese	anr					
Molybdenum						
Nickel						
Phosphorus						
Potassium	3080	29400	25000	105.3	0.0	20
Selenium	anr					
Silicon						
Silver	anr					
Sodium	435000	456000	25000	84.0	0.2	20
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc						

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

Login Number: D29699
Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $\,$

18 of 26 ACCUTEST. D29699

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D29699
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

11/28/11

Metal	BSP Result	Spikelot MPICPALL		QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Boron				
Cadmium	anr			
Calcium	26700	25000	106.8	80-120
Chromium	anr			
Cobalt				
Copper				
Iron	anr			
Lead	anr			
Lithium				
Magnesium	24400	25000	97.6	80-120
Manganese	anr			
Molybdenum				
Nickel				
Phosphorus				
Potassium	25200	25000	100.8	80-120
Selenium	anr			
Silicon				
Silver	anr			
Sodium	24600	25000	98.4	80-120
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				
Associated sa	amples MP6	352: D2969	9-1F	
Results < ID:	L are show of QC limi	n as zero ts	for calcu	ulation purposes

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP6352 Matrix Type: AQUEOUS

Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

~ 1	C1 .
(teneral	Chemistry
Ochiciai	Chichingu y

QC Data Summaries

Includes the following where applicable:

- · Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Bromide	GP6005/GN12657	0.20	0.0	mg/l	20	19.2	96.0	90-110%
Chloride	GP6005/GN12657	0.50	0.27	mg/1	20	19.7	98.5	90-110%
HEM Oil and Grease	GP6040/GN12728	5.0	0.0	mg/l	40	35.0	87.5	78-114%
Nitrogen, Nitrate	GP6005/GN12657	0.045	0.0	mg/l	4.52	4.32	95.6	90-110%
Nitrogen, Nitrite	GP6005/GN12657	0.061	0.0	mg/l	6.09	6.23	102.3	90-110%
Solids, Total Dissolved	GN12659	10	0.0	mg/1	400	403	100.8	90-110%
Sulfate	GP6005/GN12657	0.50	0.0	mg/l	30	29.0	96.7	90-110%
Otal Organic Carbon	GP6057/GN12769	1.0	0.0	mg/l	7.2	7.45	103.5	90-1109
H	GN12643			su	8.00	7.96	99.5	99.3-10

Associated Samples:
Batch GN12643: D29699-1
Batch GN12659: D29699-1
Batch GP6005: D29699-1
Batch GP6040: D29699-1
Batch GP6057: D29699-1
(*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit
HEM Oil and Grease	GP6040/GN12728	mg/l	40	33.4	4.7	20%

Associated Samples: Batch GP6040: D29699-1 (*) Outside of QC limits

3

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Solids, Total Dissolved	GN12659	D29674-1	mg/l	92.0	96.0	4.3	0-25%
Total Organic Carbon	GP6057/GN12769	D29825-3	mg/l	6.1	6.2	1.6	0-20%

Associated Samples: Batch GN12659: D29699-1 Batch GP6057: D29699-1 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D29699 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg Tank

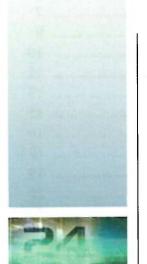
Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Bromide	GP6005/GN12657	D29711-1	mq/1	0.20	2.5	2.5	92.0	80-1209
Chloride	GP6005/GN12657	D29711-1	mq/l	12.0	10	21.6	96.0	80-120%
Nitrogen, Nitrate	GP6005/GN12657	D29711-1	mg/l	0.0	0.565	0.52	92.0	80-120%
Nitrogen, Nitrite	GP6005/GN12657	D29711-1	mg/l	0.0	0.305	0.30	98.5	80-120%
Sulfate	GP6005/GN12657	D29711-1	mg/l	179	100	272	93.0	80-120%
Total Organic Carbon	GP6057/GN12769	D29826-2	mg/l	3.1	10	14.1	110.0	80-120%

(D)

Associated Samples: Batch GP6005: D29699-1 Batch GP6057: D29699-1

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY


Login Number: D29699
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Bromide	GP6005/GN12657	D29711-1	mg/l	0.20	2.5	2.6	3.9	20%
Chloride	GP6005/GN12657	D29711-1	mg/l	12.0	10	21.6	0.0	20%
Nitrogen, Nitrate	GP6005/GN12657	D29711-1	mg/l	0.0	0.565	0.53	1.9	20%
Nitrogen, Nitrite	GP6005/GN12657	D29711-1	mg/l	0.0	0.305	0.29	3.4	20%
Sulfate	GP6005/GN12657	D29711-1	mg/l	179	100	279	2.5	20%
Total Organic Carbon	GP6057/GN12769	D29826-2	mg/l	3.1	10	13.8	2.2	20%

Associated Samples:
Batch GP6005: D29699-1
Batch GP6057: D29699-1
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

01/09/12

Technical Report for

K.P. Kauffmann Company, Inc.

Wattenberg GW

PO# 7591

Accutest Job Number: D30535

Sampling Date: 12/21/11

Report to:

K.P. Kauffmann Company, Inc 1675 Broadway Suite 2800 Denver, CO 80202-4628 sglass@kpk.com; mhattel@msn.com

ATTN: Sherry Glass

Total number of pages in report: 40

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Shea Greiner 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW) UT (NELAP CO00049)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Brad Madadian

Laboratory Director

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	6
3.1: D30535-1: OW-1	7
3.2: D30535-1F: OW-1	9
3.3: D30535-2: OW-2	10
3.4: D30535-2F: OW-2	12
3.5; D30535-3: OW-3	
3.6; D30535-3F: OW-3	15
3.7: D30535-4: OW-4	16
3.8: D30535-4F: OW-4	18
Section 4: Misc. Forms	19
4.1: Chain of Custody	20
Section 5: GC Volatiles - QC Data Summaries	22
5.1: Method Blank Summary	23
5.2: Blank Spike Summary	24
5.3: Matrix Spike/Matrix Spike Duplicate Summary	25
Section 6: Metals Analysis - QC Data Summaries	26
6.1: Prep QC MP6540: Ca,Mg,K,Na	27
Section 7: General Chemistry - QC Data Summaries	35
7.1: Method Blank and Spike Results Summary	36
7.2: Blank Spike Duplicate Results Summary	37
7.3: Duplicate Results Summary	38
7.4: Matrix Spike Results Summary	39
7.5: Matrix Spike Duplicate Results Summary	40

Sample Summary

K.P. Kauffmann Company, Inc.

Job No:

D30535

Wattenberg GW Project No: PO# 7591

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
D30535-1	12/21/11	08:00 MH	12/21/11	AQ	Ground Water	OW-1
D30535-1F	12/21/11	08:00 MH	12/21/11	AQ	Groundwater Filtered	OW-1
D30535-2	12/21/11	08:55 MH	12/21/11	AQ	Ground Water	OW-2
D30535-2F	12/21/11	08:55 MH	12/21/11	AQ	Groundwater Filtered	OW-2
D30535-3	12/21/11	09:55 MH	12/21/11	AQ	Ground Water	OW-3
D30535-3F	12/21/11	09:55 MH	12/21/11	AQ	Groundwater Filtered	OW-3
D30535-4	12/21/11	11:00 MH	12/21/11	AQ	Ground Water	OW-4
D30535-4F	12/21/11	11:00 MH	12/21/11	AQ	Groundwater Filtered	OW-4

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: K.P. Kauffmann Company, Inc.

Job No

D30535

Site:

Wattenberg GW

Report Date

1/9/2012 9:01:07 AM

On 12/21/2011, 4 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 4 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D30535 was assigned to the project. The lab sample IDs, client sample IDs, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GC By Method SW846 8021B

Matrix AQ

Batch ID: GTB816

- All samples were analyzed within the recommended method holding time.
- Sample(s) D30425-2MS, D30425-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010B

Matrix AQ

Batch ID: MP6540

- * All samples were digested and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D30545-1MS, D30545-1MSD were used as the QC samples for the metals analysis.

Wet Chemistry By Method EPA 1664A

Matrix AQ

Batch ID: GP6223

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 300/SW846 9056

Matrix AQ

Batch ID: GP6171

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D25282-8MS, D25282-8MSD were used as the QC samples for the Chloride, Nitrogen, Nitrate, Nitrogen, Nitrite, Sulfate, Chloride analysis.
- D30535-1, D30535-2, D30535-3, and D30535-4 for Nitrogen, Nitrite: Elevated detection limit due to matrix interference.
- D30535-1 for Nitrogen, Nitrate: Elevated detection limit due to matrix interference.

2

Wet Chemistry By Method SM20 2320B

Matrix AQ

Batch ID: GN13081

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D30551-IDUP, D30551-IMS, D30551-IMSD were used as the QC samples for the Alkalinity, Total as CaCO3 analysis.

Matrix AQ

Batch ID: GN13085

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Matrix AQ

Batch ID: GN13086

- All samples were analyzed within the recommended method holding time.
- * All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SM20 2540C

Matrix AQ

Batch ID: GN13041

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D30535-1DUP were used as the QC samples for the Solids, Total Dissolved analysis.

Wet Chemistry By Method SM20 5310B

Matrix AQ

Batch ID: GP6210

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D30425-4DUP, D30535-1MS, D30535-1MSD were used as the QC samples for the Total Organic Carbon analysis.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Sample Results	Leidhen balancan von vor mara 1
Report of Analysis	

Report of Analysis

Page 1 of 1

Client Sample ID: OW-1

Lab Sample ID: D30535-1

Matrix: Method:

Project:

AQ - Ground Water SW846 8021B

Wattenberg GW

Date Sampled: 12/21/11

Date Received: 12/21/11

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	TB14450.D	1	12/28/11	SK	n/a	n/a	GTB816
Run #2							

Purge Volume Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	1.0	1.0	0.20	ug/l	
108-88-3	Toluene	ND	2.0	1.0	ug/l	
100-41-4	Ethylbenzene	ND	2.0	1.0	ug/l	
1330-20-7	Xylenes (total)	ND	2.0	2.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
120-82-1	1,2,4-Trichlorobenzene	104%		60-1	40%	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: OW-1 Lab Sample ID: D30535-1

AQ - Ground Water

Wattenberg GW

Date Sampled: 12/21/11 **Date Received:** 12/21/11

Percent Solids: n/a

Project:

Matrix:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Bicarbonate as CaC	803	5.0	mg/l	1	12/30/11	JD	SM20 2320B
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	12/30/11	JD	SM20 2320B
Alkalinity, Total as CaCO3	803	5.0	mg/l	1	12/30/11	JD	SM20 2320B
Chloride	4150	100	mg/l	200	12/21/11 18:57	GH	EPA 300/SW846 9056
HEM Oil and Grease	10.3	5.6	mg/l	1	01/04/12	SWT	EPA 1664A
Nitrogen, Nitrate ^a	< 0.90	0.90	mg/l	20	12/21/11 14:05	GH	EPA 300/SW846 9056
Nitrogen, Nitrite a	< 6.1	6.1	mg/l	100	12/21/11 18:43	GH	EPA 300/SW846 9056
Solids, Total Dissolved	10100	10	mg/l	1	12/27/11	JK	SM20 2540C
Sulfate	1660	50	mg/l	100	12/21/11 18:43	GH	EPA 300/SW846 9056
Total Organic Carbon	34.5	2.0	mg/l	2	12/29/11 15:44	NS	SM20 5310B

(a) Elevated detection limit due to matrix interference.

Report of Analysis

Page 1 of 1

Client Sample ID: OW-1

D30535-1F Lab Sample ID:

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Project:

Wattenberg GW

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	427000	400	ug/l	1	12/23/11	12/23/11 JB	SW846 6010B ¹	SW846 3010A ³
Magnesium	407000	200	ug/l	1	12/23/11	12/23/11 JB	SW846 6010B ¹	SW846 3010A ³
Potassium	11900	1000	ug/l	1	12/23/11	12/23/11 JB	SW846 6010B ¹	SW846 3010A ³
Sodium	2530000	4000	ug/l	10	12/23/11	12/28/11 JB	SW846 6010B ²	SW846 3010A ³

(1) Instrument QC Batch: MA2075 (2) Instrument QC Batch: MA2082

w

Client Sample ID: OW-2

Lab Sample ID:D30535-2Date Sampled:12/21/11Matrix:AQ - Ground WaterDate Received:12/21/11Method:SW846 8021BPercent Solids:n/a

Project: Wattenberg GW

Analytical Batch File ID **Prep Date** Prep Batch DF Analyzed By GTB816 Run #1 TB14451.D 12/28/11 SK n/a n/a 1 Run #2

....

Purge Volume
Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylenes (total)	0.25 ND ND ND	1.0 2.0 2.0 2.0	0.20 1.0 1.0 2.0	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
120-82-1	1,2,4-Trichlorobenzene	96%		60-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.3

Client Sample ID: OW-2

Lab Sample ID: D30535-2

Matrix:

AQ - Ground Water

Date Sampled: 12/21/11 **Date Received:** 12/21/11

Percent Solids: n/a

Project:

Wattenberg GW

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Bicarbonate as Ca	C 986	5.0	mg/l	1	12/30/11	ЛD	SM20 2320B
Alkalinity, Carbonate	< 5.0	5.0	mg/1	1	12/30/11	JD	SM20 2320B
Alkalinity, Total as CaCO3	986	5.0	mg/1	1	12/30/11	JD	SM20 2320B
Chloride	4740	200	mg/1	400	12/21/11 19:25	GH	EPA 300/SW846 9056
HEM Oil and Grease	12.8	5.0	mg/1	1	01/04/12	SWT	EPA 1664A
Nitrogen, Nitrate	8.8	0.90	mg/l	20	12/21/11 14:19	GH	EPA 300/SW846 9056
Nitrogen, Nitrite a	< 6.1	6.1	mg/1	100	12/21/11 19:11	GH	EPA 300/SW846 9056
Solids, Total Dissolved	16800	10	mg/1	1	12/27/11	JK	SM20 2540C
Sulfate	5270	200	mg/1	400	12/21/11 19:25	GH	EPA 300/SW846 9056
Total Organic Carbon	46.4	2.0	mg/1	2	12/29/11 15:57	NS	SM20 5310B

(a) Elevated detection limit due to matrix interference.

Client Sample ID: OW-2

Lab Sample ID: D30535-2F Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Project: Wattenberg GW

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	568000	400	ug/l	1	12/23/11	12/23/11 јв	SW846 6010B ¹	SW846 3010A ³
Magnesium	682000	200	ug/l	1	12/23/11	12/23/11 јв	SW846 6010B ¹	SW846 3010A ³
Potassium	19900	1000	ug/l	1	12/23/11	12/23/11 лв	SW846 6010B ¹	SW846 3010A ³
Sodium	4050000	4000	ug/l	10	12/23/11	12/28/11 лв	SW846 6010B ²	SW846 3010A ³

(1) Instrument QC Batch: MA2075 (2) Instrument QC Batch: MA2082 (3) Prep QC Batch: MP6540

Client Sample ID: OW-3 Lab Sample ID:

D30535-3

Matrix: Method:

Project:

AQ - Ground Water SW846 8021B

Wattenberg GW

Date Sampled: 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Analytical Batch By **Prep Date Prep Batch** DF Analyzed File ID SK GTB816 12/28/11 n/a n/a Run #1 TB14452.D 1

Run #2

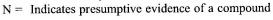
Purge Volume

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylenes (total)	1.3 ND ND ND	1.0 2.0 2.0 2.0	0.20 1.0 1.0 2.0	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	nits	
120-82-1	1,2,4-Trichlorobenzene	95%		60-1	140%	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: OW-3 Lab Sample ID:

D30535-3

AQ - Ground Water

Date Sampled: 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Project:

Matrix:

Wattenberg GW

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Bicarbonate as CaC	988	5.0	mg/l	1	12/30/11	JD	SM20 2320B
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	12/30/11	JD	SM20 2320B
Alkalinity, Total as CaCO3	988	5.0	mg/l	1	12/30/11	JD	SM20 2320B
Chloride	3650	200	mg/l	400	12/21/11 19:53	GH	EPA 300/SW846 9056
HEM Oil and Grease	7.3	5.8	mg/l	1	01/04/12	SWT	EPA 1664A
Nitrogen, Nitrate	4.1	0.90	mg/l	20	12/21/11 14:33	GH	EPA 300/SW846 9056
Nitrogen, Nitrite ^a	< 6.1	6.1	mg/l	100	12/21/11 19:39	GH	EPA 300/SW846 9056
Solids, Total Dissolved	15500	10	mg/l	1	12/27/11	JК	SM20 2540C
Sulfate	5620	200	mg/l	400	12/21/11 19:53	GH	EPA 300/SW846 9056
Total Organic Carbon	45.9	2.0	mg/l	2	12/29/11 16:08	NS	SM20 5310B

(a) Elevated detection limit due to matrix interference.

Client Sample ID: OW-3

Lab Sample ID: D30535-3F

Matrix:

AQ - Groundwater Filtered

Date Sampled: 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Project:

Wattenberg GW

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium Magnesium Potassium Sodium	455000 596000 18000 3960000	400 2000 10000 4000	ug/l ug/l ug/l ug/l	1 10 10	12/23/11 12/23/11 12/23/11 12/23/11	12/23/11 JB 12/28/11 JB 12/28/11 JB 12/28/11 JB	SW846 6010B ¹ SW846 6010B ² SW846 6010B ² SW846 6010B ²	SW846 3010A ³ SW846 3010A ³ SW846 3010A ³

(1) Instrument QC Batch: MA2075 (2) Instrument QC Batch: MA2082

(3) Prep QC Batch: MP6540

Client Sample ID: OW-4

Lab Sample ID: D30535-4

Matrix: Method:

AQ - Ground Water SW846 8021B

Date Sampled: 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Project:

Wattenberg GW

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	TB14453.D	1	12/28/11	SK	n/a	n/a	GTB816

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-88-3	Toluene	ND	2.0	1.0	ug/I	
100-41-4	Ethylbenzene	ND	2.0	1.0	ug/l	
1330-20-7	Xylenes (total)	ND	2.0	2.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
120-82-1	1,2,4-Trichlorobenzene	97%		60-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

5.7

Client Sample ID: OW-4

Lab Sample ID: D30535-4

Matrix: AQ - Ground Water

Date Sampled: 12/21/11 **Date Received:** 12/21/11

Percent Solids: n/a

Project:

Wattenberg GW

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Bicarbonate as Ca		5.0	mg/l	1	12/30/11	ND ND	SM20 2320B
Alkalinity, Carbonate Alkalinity, Total as CaCO3	< 5.0 322	5.0	mg/l mg/l	1	12/30/11 12/30/11	'ID	SM20 2320B SM20 2320B
Chloride	3430	200	mg/l	400	12/21/11 20:21	GH	EPA 300/SW846 9056
HEM Oil and Grease	8.1	6.2	mg/l	1	01/04/12	SWT	EPA 1664A
Nitrogen, Nitrate	69.9	4.5	mg/l	100	12/21/11 20:07	GH	EPA 300/SW846 9056
Nitrogen, Nitrite a	< 6.1	6.1	mg/l	100	12/21/11 20:07	GH	EPA 300/SW846 9056
Solids, Total Dissolved	17100	10	mg/l	1	12/27/11	JK	SM20 2540C
Sulfate	7210	200	mg/1	400	12/21/11 20:21	GH	EPA 300/SW846 9056
Total Organic Carbon	73.8	5.0	mg/l	5	12/29/11 16:21	NS	SM20 5310B

(a) Elevated detection limit due to matrix interference.

Client Sample ID: OW-4

Lab Sample ID: D30535-4F

Matrix: AQ - Groundwater Filtered **Date Sampled:** 12/21/11 Date Received: 12/21/11

Percent Solids: n/a

Project:

Wattenberg GW

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium	507000	400	ug/l	1	12/23/11	12/23/11 ЈВ	SW846 6010B ^l	SW846 3010A ³
Magnesium	578000	200	ug/1	1	12/23/11	12/23/11 ЈВ	SW846 6010B ¹	SW846 3010A ³
Potassium	22000	1000	ug/l	1	12/23/11	12/23/11 лв	SW846 6010B ¹	SW846 3010A ³
Sodium	3910000	4000	ug/l	10	12/23/11	12/28/11 јв	SW846 6010B ²	SW846 3010A ³

(1) Instrument QC Batch: MA2075 (2) Instrument QC Batch: MA2082

(3) Prep QC Batch: MP6540

Misc. Forms	
Custody Docume	ents and Other Forms

	CHAIN	OF	CUSTODY
4.2	4005.11		110

#M -4	M ACCUTES				у	C		IN 4036 Yo 03-425-4	ungi	ield :	St., V	Whea	t Ridg	e, CC	800	33	Tracking	*				Bottle	Order Co	ontrol#			
	Laborator	***************************************														Accutes	I Quote #					Accute	st Job#	D	30	535	_
30 30 0	Client / Reporting Information	17.3 20.	A HEAR	4.4		Proi	ect Info	rmation			- 4									T	Regu	ested.	Analys	ils		Matrix Codes	
Company N				-	Project N			ENBE		GR	OUN	VOV	ATE	R						1				Ī		DW- Drinking Water	ar.
Address	K.P. Kauffman Company, Inc.				Street																			- ;		GW- Ground Water	1
	Broadway, Suite 2800				0												uï		-	-	8	ļ	i i			SW- Surface Water	er .
City	State		Zíp		City					Stat							E		NA)		Ä			1		SO- Soil SL-Sludge	
Denve		80202-46			Fort L	·					co					_	N (i		Ž		B	l		-		OI-OII	
Project Con	MICHAEL HATTEL	mhattel@	gmsr	.com	Project #											1664	L X		Mg,	e .	(CARB/BICARB)	1	1	1		LIQ- Other Liquid	
Phone #	202 665 4400				Fax#											E 1	₽₽		Ä,		<u> </u>						
Samplers's	303-665-1400 Name MICHAEL HATTEL				Client Pu	rchase Order	#								591	GREASE 1664	Z O		(Ca,	2	Ĕ					AIR- Air	
Accutest		SUMMA#	, .		Collect	lon			Atre	mha	v of n		erved				A		SNS	80,	=					SQL-Other Solid WP-Wipe	
Sample #	Field ID / Point of Collection	MEOH Vial #		Date	Time	Sampled by	Matrix	# of bottles	Q.	HO#	_	POST.	E V	FOR PA	ENCORE	OIL &	ANIONS (NITRATE, NITRITE, SULFATE, CHLORIDE)	700	CATIONS	BTEX 8021	ALKALINITY	TDS				LAB USE ONL	Y
	OW-1		12	Li/II	0800	MDH	GW	9	х		П	х	Т	Т		Х	х	х	х	x	х	х				61	
	OW-2		Ť	1	17955	MDH	GW	9	x		П	х	7	\top	П	х	х	х	x	x	х	х				02	_
1	OW-3		1	_	0955	MDH	-	8	x			x	十	+		x	x	Х	x	x	х	x	1	—	\vdash	03	
	OW-4			 	1			8	-		-	\rightarrow	╅	+-	\vdash		_	-	_	1		×	 "	 		04	_
	•		<u> </u>		1100	MDH	GW	3	X		Н	х	+	┿	-	X	X	Х	X	X	Х	X		-			_
	······		-		-				-	Н	-	4	+				<u> </u>		_			<u> </u>	ļ	—		0500	_
		_	L								Ш		_	1					_	_	_			<u> </u>		(36)	_
		_	<u> </u>		ļ				L		Ц	4		ļ_						_						12/2/	11
											Ш			1													7
												ı															
					1									T									ļ				_
1148	Turnaround Time (Business days)						Data De	liverable	infor		_	linat .	N.	1	(1)		- 594		41.			ommen	ts / Ren	narks	3		
X	Std. 10 Business Days	Approved By	r:/ Date			_	nercial "/ nercial "l				LL CL ASP C		ory A			PDF copy to Kent Gilbert with KPK at kgilbert@kok.com											
						NJ Re			1		ASP (-	ory B				PDF c	opy ál:	so to	Mike	Hattel	with .	APEX	at mh	attel@r	nsn.com	
				•		X Hard C	ору		x	PDI	F					1	Hard	ору А	LSO	to Mik	e Hat	tel wit	h APE	X, P.(). Box 3	169,	
Emerg	়ৈ gency T/A data available VIA Lab																Lou	uisville	e, CO	8002	7-030	39		Ç	B	10/26/16	3
Balland	d by Sampler:	stody must be	e doc	ument	ed below	each time s	amples	change					ding e		er del	lvery.		Date 11m				Receive	er den			with or a course Bill	24
1 7	MANUL S		12/2	reli	(12/3		<u>ഏ</u>	ρAu	1	221 24	8	2										2	•				
Reimquish	ed by:		Date	ime:		Received By:					F	Kelinq	bedalu	ну:				Date Tim	B;			Receive	aa By:				
Relinquist	ed by:		Date T	ime:		Received By:			-		- 4	4 Custo	iy Seal	* \	17-		Preserve	d where I	pplicab	le		4		Onlo	in Co	ioler Temp.	_
5						5								+	4D			ĈΧ						Ŗ		4.0	
																υv	aly r	ecei ple	Ve c	73 c	ne	1 U	\$ G	loot Jule	1140 ·	bor	

D30535: Chain of Custody Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: D3053	5	Clie	nt: K.P.KAUFF	MAN CC	MPANY	INC.	Immediate Client Service	es Action Rec	quired:	No
Date / Time Received: 12/21/2011 12:45:00 P		No. Co	No. Coolers: 1			Client Service Action Required at Login:				
Project: WATTERBERG GROU	JNDWA	TER				Airbill #'s:	HD			
2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved:	<u>Y or</u>	4. Smpl i	DC Present: Dates/Time OK	Y or	<u>N</u> □	Sample labels p Container labelin	ng complete: er label / COC agree:	Y or Y or Y or	N	
2. Cooler temp verification:		ed gun				Sample recvd with	ithin HT:			
3. Cooler media:	Ice	(bag)				2. All containers ac	counted for:	\square		
Quality Control Preservation	<u>Y</u>	or N	N/A			Condition of san	nple:	Intac	t	
1. Trip Blank present / cooler:	\checkmark					Sample Integrity	/ - Instructions	Y or	N	N/A
2. Trip Blank listed on COC:	V					1. Analysis reques	sted is clear:	\mathbf{Z}		
3. Samples preserved properly:	\checkmark					2. Bottles received	d for unspecified tests		\checkmark	
4. VOCs headspace free:	\checkmark						ne rec'd for analysis:	2		_
						4. Compositing ins				V
						5. Filtering instruct	tions clear:			✓
Comments										
Accutest Laboratories V:(303) 425-6021					4036 Youn F: (303)	gfield Street 425-6854		Wheat Ridge www/accutes		

D30535: Chain of Custody

Page 2 of 2

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number:

D30535

Account:

KPKCOD K.P. Kauffmann Company, Inc.

Project:

Wattenberg GW

GTB816-MB TB14433.D 1 12/28/11 SK n/a n/a GTB816	al Batcl

The QC reported here applies to the following samples:

Method: SW846 8021B

Page 1 of 1

D30535-1, D30535-2, D30535-3, D30535-4

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylenes (total)	ND ND ND	1.0 2.0 2.0 2.0 2.0	0.20 1.0 1.0 2.0	ug/l ug/l ug/l ug/l

CAS No. Surrogate Recoveries Limits

120-82-1 1,2,4-Trichlorobenzene 107% 60-140%

Blank Spike Summary Job Number: D30535

Account:

KPKCOD K.P. Kauffmann Company, Inc.

Project:

Wattenberg GW

Sample	File ID	DF	Analyzed 12/28/11	By	Prep Date	Prep Batch	Analytical Batch
GTB816-BS	TB14434.D	1		SK	n/a	n/a	GTB816

The QC reported here applies to the following samples:

Method: SW846 8021B

D30535-1, D30535-2, D30535-3, D30535-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3	Benzene Ethylbenzene Toluene	27.2 45.6 212	29.1 47.3 206	107 104 97	70-130 70-130 70-130
1330-20-7 CAS No.	Xylenes (total) Surrogate Recoveries	216 BSP	238 Lim	110	68-130
120-82-1	1,2,4-Trichlorobenzene	116%		140%	

Matrix Spike/Matrix Spike Duplicate Summary Job Number: D30535

Page 1 of 1

Account:

KPKCOD K.P. Kauffmann Company, Inc.

Project:

Wattenberg GW

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D30425-2MS	TB14436.D	1	12/28/11	SK	n/a	n/a	GTB816
D30425-2MSD	TB14437.D	1	12/28/11	SK	n/a	n/a	GTB816
D30425-2	TB14435.D	1	12/28/11	SK	n/a	n/a	GTB816

The QC reported here applies to the following samples:

Method: SW846 8021B

D30535-1, D30535-2, D30535-3, D30535-4

CAS No.	Compound	D30425-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylenes (total)	99.4 7.0 73.4 38.4	27.2 45.6 212 216	128 40.6 216 209	105 74 67 79	133 40.8 218 210	124 74 68 79	4 0 1 0	67-130/30 62-130/30 66-130/30 61-130/30
CAS No.	Surrogate Recoveries	MS	MSD	D30	0425-2	Limits			
120-82-1	1,2,4-Trichlorobenzene	108%	99%	106	5%	60-140%	ó		

3	. 1	
Metals	Analy	7010
IVICIAIS	7 Miai	A DID

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- · Serial Dilution Summaries

Part 2 - Method Blanks

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

12/23/11

Metal	RL	IDL	MDL	MB raw	final
Aluminum	100	5.9	5.9		
Antimony	30	3.1	3.1		
Arsenic	25	5.9	5.9		
Barium	10	1.1	1.1		
Beryllium	10	.44	.5		
Boron	50	4.8	4.8		
Cadmium	10	.27	.27		
Calcium	400	9.6	15	48.8	<400
Chromium	10	.18	.79		
Cobalt	5.0	.35	.35		
Copper	10	.85	2.8		
Iron	70	3.4	13		
Lead	50	1.6	2.1		
Lithium	2.0	.28	1.2		
Magnesium	200	5.8	10	2.1	<200
Manganese	5.0	.053	.31		
Molybdenum	10	.45	.87		
Nickel	30	.43	1		
Phosphorus	100	11	20		
Potassium	1000	55	55	24.7	<1000
Selenium	50	3.8	3.8		
Silicon	50	3.8	3.8		
Silver	30	.18	.31		
Sodium	400	110	110	95.3	<400
Strontium	5.0		.25		
Thallium	10	2.9	2.9		
Tin	50	5.5	9.9		
Titanium	10	.11	.31		
Uranium	50	1.5	3.5		
Vanadium	10	.16	.22		
Zinc	30	.28	1.8		

Associated samples MP6540: D30535-1F, D30535-2F, D30535-3F, D30535-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

Login Number: D30535 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/1

Prep Date:

12/23/11

Metal	D30545-1 Original		Spikelot MPICPALL	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic	anr				
Barium	anr				
Beryllium					
Boron					
Cadmium	anr				
Calcium	127000	152000	25000	100.0	75-125
Chromium	anr				
Cobalt					
Copper	anr				
Iron	anr				
Lead	anr				
Lithium					
Magnesium	24900	50600	25000	102.8	75-125
Manganese	anr				
Molybdenum					
Nickel					
Phosphorus					
Potassium	9160	37100	25000	111.8	75–125
Selenium	anr				
Silicon					
Silver	anr				
Sodium	124000	150000	25000	104.0	75-125
Strontium					
Thallium					
Tin					
Titanium					
Uranium					
Vanadium					
Zinc					
					D30535-3F, D30535-4F
Results < ID: (*) Outside	L are show of QC limi	n as ze ro ts	for calcu	lation p	urposes

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $\,$

30 of 40
ACCUTEST.
D30535

Login Number: D30535 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

12/23/11

Metal	D30545-1 Original		Spikelo MPICPAL		MSD RPD	QC Limit
Aluminum	*					
Antimony						
Arsenic	anr					
Barium	anr					
Beryllium						
Boron						
Cadmium	anr					
Calcium	127000	152000	25000	100.0	0.0	20
Chromium	anr					
Cobalt						
Copper	anr					
Iron	anr					
Lead	anr					
Lithium						
Magnesium	24900	50200	25000	101.2	0.8	20
Manganese	anr					
Molybdenum						
Nickel						
Phosphorus						
Potassium	9160	36700	25000	110.2	1.1	20
Selenium	anr					
Silicon						
Silver	anr					
Sodium	124000	149000	25000	100.0	0.7	20
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc						
Associated s	amples MP6	540: D305	35-1F, D3	0535-2F,	D30535-3F	, D30535-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $\,$

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D30535 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

12/23/11

Prep Date:			12/23/11	
Metal	BSP Result	Spikelot MPICPALL		QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Boron				
Cadmium	anr			
Calcium	26200	25000	104.8	80-120
Chromium	anr			
Cobalt				
Copper	anr			
Iron	anr			
Lead	anr			
Lithium				
Magnesium	26200	25000	104.8	80-120
Manganese	anr			
Molybdenum				
Nickel				
Phosphorus				
Potassium	27300	25000	109.2	80-120
Selenium	anr			
Silicon				
Silver	anr			
Sodium	27000	25000	108.0	80-120
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				
Associated s	amples MP6	6540: D3053	35-1F, D3	0535-2F, D30535-3F, D30535-4F

Associated samples MP6540: D30535-1F, D30535-2F, D30535-3F, D30535-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

QC Batch ID: MP6540 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

General	Chemis	try
Otherwa)

QC Data Summaries

Includes the following where applicable:

- · Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D30535 Account: KPKCOD - K.P. Kauffmann Company, Inc. Project: Wattenberg GW

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Bicarbonate as CaC	GN13085	5.0	0.0	mg/l	100	102	102.1	90-110%
Alkalinity, Carbonate	GN13086	5.0	0.0	mg/1	100	102	102.1	80-1209
Alkalinity, Total as CaCO3	GN13081	5.0	0.0	mg/1	100	102	102.1	90-1109
Chloride	GP6171/GN13001	0.50	0.0	mg/l	20	19.8	99.0	90-1109
HEM Oil and Grease	GP6223/GN13093	5.0	0.0	mg/1	40	38.3	95.8	78-1149
Nitrogen, Nitrate	GP6171/GN13001	0.045	0.0	mg/l	4.52	4.41	97.6	90-1109
Nitrogen, Nitrite	GP6171/GN13001	0.061	0.0	mg/1	6.09	6.56	107.7	90-1109
Solids, Total Dissolved	GN13041	10	0.0	mq/1	400	400	100.0	90-1109
Sulfate	GP6171/GN13001	0.50	0.0	mq/l	30	28.9	96.3	90-1109
Total Organic Carbon	GP6210/GN13082	1.0	0.0	mg/l	7.2	7.40	102.8	90-1109

Associated Samples:
Batch GN13041: D30535-1, D30535-2, D30535-3, D30535-4
Batch GN13081: D30535-1, D30535-2, D30535-3, D30535-4
Batch GN13086: D30535-1, D30535-2, D30535-3, D30535-4
Batch GN13086: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6171: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6210: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6223: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6223: D30535-1, D30535-2, D30535-3, D30535-4
(*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
HEM Oil and Grease	GP6223/GN13093	mg/l	40	36.6	4.5	20%	

Associated Samples: Batch GP6223: D30535-1, D30535-2, D30535-3, D30535-4 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Alkalinity, Total as CaCO3	GN13081	D30551-1	mg/l	306	315	3.0	0-20%
Solids, Total Dissolved	GN13041	D30535-1	mg/1	10100	10100	0.0	0-25%
Total Organic Carbon	GP6210/GN13082	D30425-4	mg/1	158	158	0.0	0-20%

Associated Samples: Batch GN13041: D30535-1, D30535-2, D30535-3, D30535-4 Batch GN13081: D30535-1, D30535-2, D30535-3, D30535-4 Batch GP6210: D30535-1, D30535-2, D30535-3, D30535-4 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

		QC		Original	Spike	MS		QC
Analyte	Batch ID	Sample	Units	Result	Amount	Result	%Rec	Limits
Alkalinity, Total as CaCO3	GN13081	D30551-1	mg/l	306	100	407	100.8	80-120%
Chloride	GP6171/GN13001	D25282-8	mg/l	201	100	309	108.0	80-120%
Nitrogen, Nitrate	GP6171/GN13001	D25282-8	mg/l	11.0	28.3	38.4	97.0	80-120%
Nitrogen, Nitrite	GP6171/GN13001	D25282-8	mg/l	0.0	3.05	3.1	101.8	80-120%
Sulfate	GP6171/GN13001	D25282-8	mg/l	574	500	1050	95.2	80-120%
Total Organic Carbon	GP6210/GN13082	D30535-1	mg/l	34.5	50	82.0	95.0	80-120%

Associated Samples:
Batch GN13081: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6171: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6210: D30535-1, D30535-2, D30535-3, D30535-4
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D30535
Account: KPKCOD - K.P. Kauffmann Company, Inc.
Project: Wattenberg GW

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Alkalinity, Total as CaCO3	GN13081	D30551-1	mg/l	306	100	409	0.6	20%
Chloride	GP6171/GN13001	D25282-8	mg/l	201	100	309	0.0	20%
Nitrogen, Nitrate	GP6171/GN13001	D25282-8	mg/l	11.0	28.3	38.5	0.3	20%
Nitrogen, Nitrite	GP6171/GN13001	D25282-8	mg/l	0.0	3.05	3.1	0.0	20%
Sulfate	GP6171/GN13001	D25282-8	mg/l	574	500	1050	0.0	20%
Total Organic Carbon	GP6210/GN13082	D30535-1	mg/l	34.5	50	81.7	0.4	20%

Associated Samples:
Batch GN13081: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6171: D30535-1, D30535-2, D30535-3, D30535-4
Batch GP6210: D30535-1, D30535-2, D30535-3, D30535-4
(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

